• 전체
  • 전자/전기
  • 통신
  • 컴퓨터
닫기

사이트맵

Loading..

Please wait....

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보처리학회 논문지 > 정보처리학회 논문지 소프트웨어 및 데이터 공학

정보처리학회 논문지 소프트웨어 및 데이터 공학

Current Result Document : 6 / 7 이전건 이전건   다음건 다음건

한글제목(Korean Title) 저전력 임베디드 보드 환경에서의 딥 러닝 기반 성별인식 시스템 구현
영문제목(English Title) Gender Classification System Based on Deep Learning in Low Power Embedded Board
저자(Author) 정현욱   김대회   Wisam J. Baddar   노용만   Hyunwook Jeong   Dae Hoe Kim   Wisam J. Baddar   Yong Man Ro  
원문수록처(Citation) VOL 06 NO. 01 PP. 0037 ~ 0044 (2017. 01)
한글내용
(Korean Abstract)
사물인터넷(IoT) 산업이 확산되면서 사용자의 정보를 특별한 조작없이 물체가 스스로 인식하는 일이 매우 중요해졌다. 그중에서도 성별(남, 여)은 생물학적인 구조가 달라 성향이 다르고 사회적으로도 기대하는 바가 다르기 때문에 매우 중요한 요소이다. 하지만 얼굴 이미지를 기반으로한 성별 인식과 관련된 연구는 동일한 성별이라도 다양한 생김새를 가지고 있어서 여전히 도전적인 분야이다. 그리고 성별 인식 시스템을 사물인터넷에 적용하기 위해서는 디바이스 크기를 소형화시켜야 하며 저전력으로 구동이 가능해야 한다. 따라서 본 논문에서는 저전력으로 실제 사물에서 성별을 인식할 수 있는 기능을 탑재하기 위해 딥 러닝 기반의 성별 인식 알고리즘을 제안하고 이를 모바일 GPU 임베디드 보드에 포팅하여 최종적으로 실시간 성별 인식 시스템을 구현하였다. 실험에서는 소비전력과 초당 처리 가능한 프레임 수를 PC환경과 모바일 GPU 임베디드 환경에서 측정하여 저전력 환경에서도 성별인식이 가능함을 증명하였다.

영문내용
(English Abstract)
While IoT (Internet of Things) industry has been spreading, it becomes very important for object to recognize user’s information by itself without any control. Above all, gender (male, female) is dominant factor to analyze user’s information on account of social and biological difference between male and female. However since each gender consists of diverse face feature, face-based gender classification research is still in challengeable research field. Also to apply gender classification system to IoT, size of device should be reduced and device should be operated with low power. Consequently, To port the function that can classify gender in real-world, this paper contributes two things. The first one is new gender classification algorithm based on deep learning and the second one is to implement real-time gender classification system in embedded board operated by low power. In our experiment, we measured frame per second for gender classification processing and power consumption in PC circumstance and mobile GPU circumstance. Therefore we verified that gender classification system based on deep learning works well with low power in mobile GPU circumstance comparing to in PC circumstance.
키워드(Keyword) 성별인식 딥러닝 임베디드보드 저전력   Gender Classification   Deep Learning   Embedded Board   Low Power  
파일첨부 PDF 다운로드